Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available August 1, 2026
-
Free, publicly-accessible full text available October 12, 2026
-
Far-memory techniques that enable applications to use remote memory are increasingly appealing in modern data centers, supporting applications’ large memory footprint and improving machines’ resource utilization. Unfortunately, most far-memory techniques focus on OS-level optimizations and are agnostic to managed runtimes and garbage collections (GC) underneath applications written in high-level languages. With different object-access patterns from applications, GC can severely interfere with existing far-memory techniques, breaking remote memory prefetching algorithms and causing severe local-memory misses. We developed MemLiner, a runtime technique that improves the performance of far-memory systems by aligning memory accesses from application and GC threads so that they follow similar memory access paths, thereby (1) reducing the local-memory working set and (2) improving remote-memory prefetching through simplified memory access patterns. We implemented MemLiner in two widely used GCs in OpenJDK: G1 and Shenandoah. Our evaluation with a range of widely deployed cloud systems shows that MemLiner improves applications’ end-to-end performance by up to3.3×and reduces applications’ tail latency by up to220.0×.more » « lessFree, publicly-accessible full text available August 31, 2026
-
Free, publicly-accessible full text available January 27, 2026
-
In this paper, we consider a coupled chemotaxis-fluid system that models self-organized collective behavior of oxytactic bacteria in a sessile drop. This model describes the biological chemotaxis phenomenon in the fluid environment and couples a convective chemotaxis system for the oxygen-consuming and oxytactic bacteria with the incompressible Navier–Stokes equations subject to a gravitational force, which is proportional to the relative surplus of the cell density compared to the water density. We develop a new positivity preserving and high-resolution method for the studied chemotaxis-fluid system. Our method is based on the diffuse-domain approach, which we use to derive a new chemotaxis-fluid diffuse-domain (cf-DD) model for simulating bioconvection in complex geometries. The drop domain is imbedded into a larger rectangular domain, and the original boundary is replaced by a diffuse interface with finite thickness. The original chemotaxis-fluid system is reformulated on the larger domain with additional source terms that approximate the boundary conditions on the physical interface. We show that the cf-DD model converges to the chemotaxis-fluid model asymptotically as the width of the diffuse interface shrinks to zero. We numerically solve the resulting cf-DD system by a second-order hybrid finite-volume finite-difference method and demonstrate the performance of the proposed approach on a number of numerical experiments that showcase several interesting chemotactic phenomena in sessile drops of different shapes, where the bacterial patterns depend on the droplet geometries.more » « less
An official website of the United States government

Full Text Available